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Abstract

General-purpose Vision-Language Models (VLMs) are in-
creasingly integral to modern Al systems for document un-
derstanding, yet their ability to perform fine-grained layout
analysis remains severely underdeveloped. Overcoming this
requires a large-scale, high-fidelity training dataset. However,
current annotation methods, which rely on parsing rendered
PDFs, are costly, error-prone, and fail to scale effectively.
This work introduces a paradigm shift in data acquisition to
resolve this bottleneck. We present LaTeX2Layout, a novel
and generalizable procedural pipeline that obtains ground-
truth layout information not from the final PDF, but directly
from the IIEX compilation process itself. By instrumenting
the compiler, our method produces pixel-perfect bounding
boxes and reading order, entirely bypassing the ambiguities
of post-rendering parsers. This efficient and accurate pipeline
enables us to generate a massive dataset of 140K pages, in-
cluding 120K programmatically-generated variants that more
than double the layout diversity of real-world datasets. This
unique dataset allows us to fine-tune a highly efficient 3B pa-
rameter VLM, employing a curriculum learning strategy that
re-ranks training examples from simple to complex layouts
to optimize convergence. Our model establishes a new state-
of-the-art, achieving a Kendall’s Tau of 0.95 for reading or-
der and a mAP@0.5 of 0.91 for element grounding—a nearly
200% relative improvement over formidable zero-shot base-
lines like GPT-40 and Claude-3.7. To foster reproducible re-
search and future innovation, we make our data generation
pipeline, dataset, and all models openly available.

1 Introduction

The widespread adoption of Large Language Models
(LLMs) and retrieval-augmented generation (RAG) systems
has created urgent demand for accurate PDF document un-
derstanding (Gao et al. 2023; Sharma 2025). While PDF
layouts, often encoding rich semantic information, are op-
timized for human readability, they pose significant chal-
lenges for automated processing (Xie et al. 2024). These
challenges arise from parsing complex multi-column lay-
outs, tables, figures, mathematical formulas, and cross-
references (Zhong, Tang, and Jimeno Yepes 2019; Li et al.
2020; Dolfi et al. 2022; Sun et al. 2025) while preserving
semantic relationships — an essential requirement for down-
stream applications (Tkaczyk, Zhong et al. 2022; ComPDF
2025; Liu et al. 2024; Wang et al. 2022). Document layout

models like LayoutLM (Xu et al. 2020; Huang et al. 2022)
and PP-DocLayout (Sun et al. 2025) depend on large-scale
annotated datasets.

However, most existing datasets derive layout annotations
directly from PDFs, facing two major challenges: (1) Re-
liance on expensive annotations: Manual annotation for
document layout extraction (e.g., DocLayNet (Dolfi et al.
2022), D*LA (Da et al. 2023)) is expensive at the scale
necessary for training high-quality models. (2) Error-prone
semi-automatic methods: Semi-automatic methods that
combine PDF parsers with LaTeX/XML markup (e.g., Pub-
LayNet (Zhong, Tang, and Jimeno Yepes 2019), DocBank
(Li et al. 2020), and TableBank (Li et al. 2019b)) still depend
on these parsers, which frequently mislocalize elements and
produce incorrect reading orders, particularly in scientific
documents (Adhikari and Agarwal 2025).!

To address these challenges head-on, we propose
LaTeX2Layout, a procedural pipeline that produces
pixel-perfect layout annotations for elements in a PDF doc-
ument. We achieve this by exploiting a key insight: The
BIEX compiler is aware of the bounding boxes and layout
information during the compilation process, and this can
be used to generate ground-truth annotations without ad-
ditional parsing.

Instead of treating PDF parsing as a general computer
vision problem and annotating images of PDF pages with
bounding box information, like current methods, we instru-
ment the I&TEX document to capture structural metadata dur-
ing compilation. This enables our method to obtain accu-
rate layout and reading order annotations at scale. More-
over, IATEX’s modular source code enables procedural data
generation for a diverse synthetic dataset creation — We
can arbitrarily vary layouts, fonts, and element arrangements
while programmatically obtaining aligned annotations for
data augmentation.

Our primary contributions are:

1. A cheap, reliable, and generalizable annotation
technique: We introduce a fully procedural pipeline,
LaTeX2Layout, that eliminates the need for external
human annotation and PDF parsers and extracts accurate

!See DocBank Issues 17 and 27:
https://github.com/doc-analysis/DocBank/issues/17
https://github.com/doc-analysis/DocBank/issues/27



layout annotations at 2.5 pages per second on commodity
CPU hardware. Our pipeline can generalize beyond aca-
demic papers, enabling annotations for other IST|EX-based
documents such as resumes, newspapers, and textbooks.

2. A procedural data generation framework and prin-
cipled training strategy for layout detection: We de-
velop programmatic ISIEX perturbations to create diverse
document variants with automatic annotations, resulting
in a synthetic dataset that offers twice the layout di-
versity of real-world datasets. Furthermore, we are the
first to successfully apply curriculum learning to docu-
ment layout analysis by re-ranking our dataset, which we
show significantly accelerates convergence and improves
final model performance in fine-tuning general-purpose
vision-language models (VLMs).

3. State-of-the-art results: We demonstrate the effective-
ness of our data and methods by fine-tuning a 3B-
parameter general-purpose VLM?. Our resulting model
establishes a new state-of-the-art, achieving a Kendall’s
Tau of 0.95 for reading order and mAP@0.5 of 0.91 for
element grounding. This represents a nearly 200% rel-
ative improvement over zero-shot VLM baselines like
GPT-40 and Claude-3.7. It also demonstrates superior ro-
bustness to visual perturbations and generalization to un-
seen elements compared to specialized models.

4. Open-sourced pipeline, datasets, and models: To fos-
ter reproducible research and spur further innovation in
high-fidelity document understanding, we release our en-
tire data generation pipeline, the 140K annotated dataset,
all model weights, and the training code?.

2 Related Work
2.1 Layout Dataset Construction via PDF Parsing

Existing layout annotation pipelines rely on external PDF
parsers (PDFEMiner, PDFPlumber, PyMuPDF) to extract lay-
out metadata. PubLayNet (Zhong, Tang, and Jimeno Yepes
2019) aligns PubMed XML with PDFs, while DocBank (Li
et al. 2020), DocGenome (Chen et al. 2024), and LaTeX
Rainbow (Duan, Tan, and Bartsch 2023) use color-tagging
in XTEX source followed by PDF post-processing. These ap-
proaches enable scalability but inherit parser inaccuracies,
particularly for complex layouts and mathematical content.
Our method extracts layout metadata directly from the ISTEX
compiler, eliminating parsing errors and providing deter-
ministic annotations.

2.2 Synthetic Layout Data Generation

Prior synthetic generation methods employ deep generative
models trained on real data. Early GAN-based approaches
like LayoutGAN (Li et al. 2019a) and DocSynth (Biswas
et al. 2021) produced low-resolution outputs with limited
utility. Recent advances treat layout as sequence modeling:
LayoutDM (Chai, Zhuang, and Yan 2023) uses diffusion on
token sequences, while DocSynthv2 (Biswas et al. 2024)

’Based on Qwen-2.5-VL-3B
SURL withheld for blind review

employs autoregressive transformers. Other approaches in-
clude GNNss for relational modeling (Agarwal et al. 2024),
LLM-driven generation (RIDGE (Jiang et al. 2025)), and al-
gorithmic methods like 2D bin packing (Zhao et al. 2024a).
These methods require significant computational resources
and struggle with complex layouts. By programmatically
generating I&TEX source, we leverage a mature typesetting
engine to produce structurally correct documents with per-
fect annotations as a deterministic compilation byproduct,
eliminating expensive annotation steps.

2.3 Document Layout Analysis Models

Recent models jointly model textual, visual, and spatial
features. The LayoutLM series (Xu et al. 2020, 2021;
Huang et al. 2022) extends transformers with layout em-
beddings. LiLT (Wang, Jin, and Ding 2022) enables cross-
lingual understanding, while LayoutLLM (Huang et al.
2023) integrates layout into LLMs. Detection-based ap-
proaches include DocLayout-YOLO (Zhao et al. 2024b)
and PP-DocLayout (Du et al. 2025). Despite their suc-
cess, these models require domain-specific architectures. Al-
though VLMs have been widely applied in various doc-
ument understanding systems, the potential of general-
purpose VLMs for layout understanding remains largely un-
explored (Zhang et al. 2024; Zong et al. 2025). Our work
addresses this gap by fine-tuning a general-purpose VLM
with high-fidelity layout data, demonstrating significant im-
provements in grounding and reading order prediction.

3 The LaTeX2Layout Pipeline

While IKEX compilation is deterministic, standard
toolchains lack a native mechanism for exporting fine-
grained layout metadata, such as element bounding boxes
and reading order. To address this gap, we introduce
Latex2Layout, a pipeline that instruments the compilation
process itself to extract high-fidelity layout annotations.
Our approach treats IATgX as a programmable typesetting
engine; we inject lightweight, layout-aware commands into
the source code that instruct the compiler to emit precise
spatial metadata during a single compilation pass.
The Latex2Layout pipeline operates in two stages:

* LaTeX-Level Instrumentation: Two custom packages —
the Non-Text Element Tracker (NET) and the Text Line
Tracker (TLT) — annotate source content to record layout
metadata as part of the compilation process.

* Post-Compilation Processing: The emitted metadata is
parsed to compute bounding boxes, align coordinate sys-
tems, and reconstruct reading order.

3.1 Tracking Non-Text Elements

The NET extracts layout metadata for non-paragraph el-
ements in KTEX documents. These include titles, head-
ings, figures, tables, captions, and mathematical expressions.
Such elements typically follow consistent syntactic patterns,
making them well-suited for systematic instrumentation.
Implementation details are provided in Appendix A.1.
Inspired by the ISTEX \fbox command that visually frames
content, we introduce a novel command \layoutmark that
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Figure 1: An overview of our pipeline for dataset generation and model training. The figure is split into the main workflow (top)
and our core annotation system (bottom). (1) Dataset Generation: We crawl and synthetically perturb I&IEX source files from
arXiv. Our LaTeX2Layout Annotation System (magnified below) compiles these sources, instrumenting them to extract
pixel-perfect layout annotations directly from the compiler. (2) Curriculum Re-Ranking: The resulting dataset is scored by
layout complexity and sorted into an easy-to-hard curriculum. (3) VLM Training: Finally, a VLM is instruction-tuned on the
ordered curriculum to predict bounding boxes and reading order from page images.

silently records the layout of the wrapped element during
compilation. It captures the following metadata: (a) Baseline
Coordinates; (b) Box Dimensions, including width, height,
and depth. 4. All metadata is written to the auxiliary .aux
file 3, enabling structured post-processing. Appendix A.4
provides the specific format of this compiler output.

Instrumentation Methods The NET is compatible with
any context where the \fbox command can be applied. We
support three flexible instrumentation strategies to accom-
modate the diverse range of elements. Full implementation
examples are available in Appendix A.2.

* Regex-Based Injection: For elements with simple and
consistent syntax, such as titles, abstracts, and headings,
we use regular expressions to automatically find and

“In 8TX, height refers to the portion above the baseline, and
depth refers to the portion below.

>The . aux file is a compiler-generated side file typically used
for cross-referencing. We extend it to store layout information.

wrap them with our \layoutmark command. However,
this external matching approach can be brittle for ele-
ments with more complex or variable syntax. For these
cases, we employ two more robust methods.

Package Hook Integration: Many IXTEX packages pro-
vide internal hooks or options that we leverage for more
reliable instrumentation. For example, the caption pack-
age allows us to define a custom format that automati-
cally applies \layoutmark to every figure and table cap-
tion. Similarly, for complex multi-line mathematical con-
tent, the empheq package’s box option can be hooked to
guarantee a precise formula box.

Command Redefinition: As a final and universally ap-
plicable strategy, we use ITEX’s native command redef-
inition mechanism. This approach is ideal for core com-
mands like \includegraphics that are too syntactically di-
verse for regex and lack convenient package hooks. We
redefine the target command to first wrap its content with
\layoutmark and then execute its original functionality.



3.2 Tracking Text Lines

While NET works well for structured non-text elements,
plain text paragraphs pose a different challenge. They lack
explicit IATEX markup, making them difficult to identify
using pattern matching. To address this, we introduce the
TLT. Inspired by the lineno package, which numbers lines
in PDFs after compilation, TLT redefines its internal hook
MakeLineNo to track line-level positional metadata automat-
ically. This process requires no changes to the paragraph
structure and no manual commands. Implementation details
are provided in Appendix A.3.

Each text line is annotated with the following metadata:
(a) Baseline Coordinates: the position of the line’s lower-left
corner; (b) Paragraph ID: a unique identifier for the ETEX
paragraph the line belongs to; (¢c) Column Number: the col-
umn index of the line in the rendered PDF, useful for detect-
ing column breaks; (d) Line Height and Width: the vertical
and horizontal extent of the rendered text. The exact format
for this line-level metadata is also detailed in Appendix A.4.

3.3 Layout Extraction

The layout metadata recorded in the auxiliary (.aux) file uses
the IXTEX coordinate system. To obtain an accurate PDF-
level layout, we perform coordinate unit conversion and axis
transformation. Additionally, text lines are aggregated into
paragraph-level segments, with support for handling column
and page breaks.

Bounding Box Computation For elements tracked by the
NET, the bounding box is computed as:

Tbase
+ B
Bnontext = gs:z + BZ} (1)
Ybase — Bd

Here, By, is the height above the baseline, By is the depth
below the baseline, and B,, is the element width.

For individual text lines tracked by TLT, the bounding box
is computed as:

Tline
Yline + Lh
Zline + Lw

Yline

Blext = (2)

Here, L;, is the height of the rendered line, and L,, is its
width.

Paragraph-Level Aggregation Paragraphs are recon-
structed by grouping text lines with the same paragraph ID.
To capture higher-level semantics, adjacent paragraphs can
be merged if their vertical spacing falls below a configurable
threshold.

Cross-Column and Cross-Page Linking The TLT mod-
ule tracks the column and page number of each line, en-
abling accurate reconstruction of paragraph structures that
span across columns or pages. This allows the system to dis-
tinguish true paragraph breaks from layout-induced ones.

Coordinate Transformation IIEX reports positions in
scaled points (sp), while PDF uses pixels. We convert co-
ordinates using the following equations:

Scaled Points (sp)

65536 ’
_ Points (pt)
Inches = 97 3

Pixels = Inches x DPI

Points (pt) =

Here, DPI (dots per inch) specifies the rendering resolu-
tion and defines the pixel-to-physical length ratio.

Additionally, the IZTEX coordinate system uses a bottom-
left origin, whereas the PDF coordinate system uses a top-
left origin. Therefore, the y-coordinate is adjusted as:

yepr = Page Height — yparex €]

Reading Order Alignment Unlike heuristic PDF parsers
that assume fixed reading flows (e.g., top-to-bottom or left-
to-right), we derive reading order directly from the compila-
tion sequence. This approach preserves authorial intent and
resolves ambiguous layout cases. For example, when a para-
graph references a footnote, If[EX compiles the referencing
text line first, immediately followed by the footnote layout,
even if the footnote appears at the bottom of the page.

4 Dataset Generation
4.1 Constructing the Real-World Seed Dataset

To build a foundational dataset of contemporary scientific
documents, we curated a 20K-page seed dataset by crawling
KTEX sources from arXiv papers published between 2022
and 2024. To ensure a representative distribution of lay-
outs, we balanced the corpus between single-column (e.g.,
NeurIPS, ICML) and double-column (e.g., AAAI, ACL) for-
mats from premier venues. We then processed each com-
pilable source through our Latex2Layout pipeline to ex-
tract high-fidelity layout and reading order annotations. Ap-
pendix B provides a detailed breakdown of this dataset.

4.2 Synthetic Augmentation

We identified two primary challenges with relying solely
on crawled data: the collection process (crawling, cleaning,
and validation) is laborious, and the resulting dataset typ-
ically exhibits an imbalanced, long-tail distribution of ele-
ment types that is difficult to control. To address this, we
introduce a procedural augmentation method that efficiently
generates a more complex, diverse, and balanced dataset.
Figure 2 showcases examples of documents generated using
this method, along with their perfectly aligned annotations.
This approach leverages the core reusability of our track-
ers: once a IATEX source file is instrumented, generating new,
perfectly annotated layout variants is as simple as modify-
ing styles or reordering elements and recompiling. This by-
passes the need to re-run the entire instrumentation pipeline
for each variant, enabling massive-scale data generation.
Using this method, we generated a 120K-page augmented
dataset. As detailed in Appendix B, this new corpus more
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Figure 2: High-quality layout annotations from our La-
TeX2Layout pipeline. Top row: Examples from crawled
real-world datasets. Bottom row: Examples from procedu-
rally generated synthetic datasets. Additional synthetic ex-
amples are in Appendix G, with generalizations to broader
document types in Appendix H.

than doubles the number of unique page-level element com-
binations and nearly doubles the aggregate proportion of
critical minority classes. We employ three strategies:

* Size and Style Perturbation (30K): We apply con-
trolled visual perturbations by scaling floating ele-
ments (figures, tables, equations) and adjusting page-
level styles (e.g., margins, fonts). This enriches layout di-
versity while preserving the original semantic structure,
creating novel layouts that are often more challenging for
the model to parse than their original counterparts.

* Floating Element Manipulation (80K): Floating ele-
ments create rich layouts by displacing the natural flow
of text. We amplify this effect by randomly reordering
and duplicating floats within documents. These manip-
ulations generate complex and varied float—text interac-
tions, exposing the model to a wider range of challenging
spatial arrangements.

e Minority Element Augmentation (10K): To directly
counteract class imbalance, we generate pages composed
exclusively of underrepresented elements (e.g., figures,
tables, footnotes, formulas). This provides focused, tar-
geted supervision for these critical minority categories,
preventing them from being overlooked during training.

4.3 Curriculum Learning Re-Ranking

Document layouts possess an intrinsic and measurable dif-
ficulty gradient, ranging from simple, single-column pages
to dense layouts with complex, interwoven elements. We ar-
gue that this inherent difficulty gradient is ideally suited for

leveraging the power of curriculum learning (CL)—a train-
ing paradigm that guides a model to learn progressively from
simple to more complex examples to optimize final conver-
gence and performance. While CL has proven effective in
other domains (Bengio et al. 2009; Saha et al. 2024), our
work extends this strategy to the task of document layout
parsing.

Specifically, we re-rank our entire training dataset (both
real and synthetic) by scoring page complexity based on
the number and heterogeneity of its constituent elements.
This graduated ordering, from simple to complex, allows
the model to first master a foundational visual grammar—
such as basic text blocks and headings—before progressing
to more challenging structures like multi-column floats and
dense tables. Empirically, we find that this approach not only
accelerates convergence but also improves the final model’s
performance and training stability.

S Model Training and Evaluation

Training. We adopt Qwen-2.5-VL-3B as the backbone of
our vision-language system, given its strong performance
and growing adoption in recent multimodal research (Bai
et al. 2025). Our core training strategy involves freezing the
pre-trained vision encoder and using Low-Rank Adaptation
(LoRA) (hiyouga 2023) to efficiently fine-tune only the lan-
guage model. This approach focuses the training on aligning
the model’s powerful visual features with our desired struc-
tured JSON output, which specifies each element’s bound-
ing box, semantic label, and reading order. The model was
trained on our combined dataset of 140K document images.
Further details on image preprocessing, prompt design, and
specific hyperparameters are available in Appendix C.1.

Evaluation. Following previous works (Zhao et al. 2024b;
Chen et al. 2024), our evaluation assesses two distinct ca-
pabilities: element grounding and reading order prediction.
We use Average Precision (AP) with a 0.5 IoU threshold to
measure grounding accuracy and Kendall’s Tau (7) (Lapata
2006) 6 to evaluate the correctness of the predicted reading
order. A key step in our pipeline is adapting the generative
VLM for standard evaluation. Since the model does not pro-
duce explicit confidence scores, we propose a method to de-
rive them from the token probability of the predicted class.
These scores are then used with class-wise Non-Maximum
Suppression (NMS) to refine detections before computing
the final metrics. The full evaluation protocol is detailed in
Appendix C.2.

6 Experimental Analysis
6.1 Evaluation Setup

Dataset. To ensure a realistic evaluation, we curated a test
set of 1K real-world academic document pages following the
same data standard as the training set. Ground-truth anno-
tations were derived using our LaTeX2Layout pipeline and

®Kendall’s Tau (1) is a rank correlation coefficient that mea-
sures the ordinal association between two sequences, ranging from
-1 (perfect disagreement) to 1 (perfect agreement). This helps eval-
uate how well the predicted reading order matches the ground truth.



were manually verified to ensure accuracy and consistency.
Detailed statistics are available in Appendix B.

Models. We evaluate (1) zero-shot performance of general-
purpos VLMs (GPT-40 (OpenAl 2024), Claude-3.7-
Sonnet (Anthropic 2024), and Qwen-2.5VL-3B-Instruct
(Qwen-2.5VL) (Bai et al. 2025)), (2) Qwen-2.5VL fine-
tuned on 20K real and 140K (20K real + 120K synthetic)
pages, and (3) YOLOVS trained on the same real and syn-
thetic datasets for grounding-only comparison.

6.2 Main Results

Our experiments are designed to validate the annotations
from our Latex2Layout pipeline and to demonstrate the im-
pact of our synthetic data on model performance. We evalu-
ate across 11 element categories, with full results in Table 1.

First, we observe that general-purpose VLMs struggle
with specialized layout parsing in a zero-shot setting. Lead-
ing models like GPT-40 and Claude-3.7 achieve low 7 scores
(0.31 and 0.32, respectively) and mAP50 scores (0.34 and
0.29, respectively), especially on fine-grained categories like
captions and footnotes. The smaller Qwen-2.5VL-3B per-
formed even more poorly; its limited pre-training for struc-
tured output tasks often resulted in it failing to adhere to the
prompt, generating incomplete or improperly formatted out-
put. This underscores that without task-specific fine-tuning,
general VLMs lack the necessary spatial inductive biases for
this task.

Our results demonstrate that fine-tuning VLMs with
layout-specific data derived from our Latex2Layout pipeline
can effectively improve their performance on this task.
Fine-tuning Qwen-2.5VL on our 20K real-world samples
achieves a reading order 7 of 0.91 and an element grounding
mAP50 of 0.78. However, performance on rare or small cat-
egories like footnote and math remains limited, a result we
attribute to the inherent class imbalance and limited layout
diversity in the crawled real-world data.

Augmenting the training set with our 120K synthetic sam-
ples effectively addresses this long-tail problem and pushes
the model to a new level of performance, achieving a final
7 of 0.95 and an mAP50 of 0.91. This combined dataset
yields dramatic relative gains on previously challenging cat-
egories, including a 53% improvement for footnote and 64%
for math. These results confirm that the rich and complex
layout diversity introduced by our synthetic data is critical
for robust document understanding.

6.3 Ablation Studies

We conduct two ablation studies to isolate and analyze the
contributions of our core components: the use of synthetic
data and our curriculum learning strategy.

Effectiveness of Synthetic Data: A Scaling Analysis To
rigorously evaluate the value of our synthetic data, we com-
pare models trained exclusively on synthetic datasets of in-
creasing sizes against a baseline trained on 20K real-world
samples. The results, shown in Figure 3, reveal two key in-
sights.

First, performance on reading order prediction saturates
quickly. A model trained on just 20K synthetic samples
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Figure 3: Impact of Synthetic Dataset Size on Grounding
(mAP50) and Reading Order (7) Compared to a 20K Real
Data Baseline

achieves a Kendall’s Tau (7) of 0.90, nearly matching the
baseline’s 0.91. This suggests the underlying structural logic
of academic layouts is highly consistent and can be learned
from a moderately sized dataset.

Second, for the more challenging task of element ground-
ing, our results demonstrate a clear and promising scaling
effect: performance improves consistently as the volume of
synthetic data increases. As shown in Figure 3, we observe
an interesting phenomenon at the 20K data point: the model
trained on synthetic data slightly lags behind the model
trained on real data. We attribute this to the fact that with
smaller dataset sizes, the advantage of the real data’s closer
distributional alignment to the test set outweighs the initial
benefits of the synthetic data’s diversity.

However, our results convincingly show that as the syn-
thetic dataset scales, the immense value of structural diver-
sity becomes the dominant factor. This diversity-driven im-
provement progressively closes the initial gap and ultimately
propels the model to a superior final performance, signif-
icantly outperforming the real-data baseline. This finding
offers a key practical takeaway: substantial performance
gains are driven not by the visual novelty of individual ele-
ments, but by the richness and complexity of the layouts they
inhabit. It validates the strategy of programmatically gen-
erating vast and diverse training data by simply composing
existing elements into novel structural arrangements.

Effectiveness of Curriculum Learning To isolate the im-
pact of our curriculum learning (CL) strategy, we compare
training on our 20K real-world dataset in an easy-to-hard or-
der versus a standard random order. The results confirm that
our CL strategy enhances both training efficiency and final
model performance.

First, the CL approach improves training dynamics. As
shown in Figure D.4 in Appendix D.5, the model trained
with our curriculum exhibits significantly faster convergence
and achieves a lower final training loss, indicating a more
stable and effective learning process.

Second, as shown in Table 2, this improved training sta-
bility translates directly to superior downstream accuracy,
increasing reading order 7 from 0.88 to 0.91 and boosting
the average element grounding mAP50 from 0.72 to 0.78.



Table 1: Main results for Reading Order Prediction (7) and Element Grounding (mAP50). Our fine-tuned models, trained with

data from Latex2Layout, establish a new state-of-the-art, dramatically outperforming leading general-purpose VLMs.

Model Reading Order Element Grounding (mAP50)
) Tit Abs Head Txt Math Fig Tab FigCap TabCap Foot Ref Average
Zero-Shot Baselines
GPT-40 0.31 0.58 0.37 0.08 0.56 0.18 0.57 035 0.17 021 0.09 0.62 034
Claude-3.7 0.32 0.65 0.58 0.05 0.48 0.08 0.38 0.39 0.01 0.07 0.12 041 0.29
Qwen-2.5VL (Base) 0.12 0.09 0.00 0.07 0.21 0.17 0.09 0.03 0.03 0.00 0.06 0.00 0.07
Ours (Qwen-2.5VL Fine-tuned)
w/ 20K Real Samples 0.91 0.75 0.85 0.73 0.92 055 0.82 0.85 0.84 0.78 0.57 092 0.78
+ 120K Synthetic Samples 0.95 0.86 0.95 0.83 0.95 090 0.93 0.92 0.93 092 0.87 097 091

Table 2: Ablation study on the effectiveness of Curriculum Learning, conducted on the 20K real-world dataset. Using CL
improves both reading order prediction and overall element grounding accuracy. Best scores for each metric are shown in bold.

. Reading Order Element Grounding (AP50)
Training Strategy
) Tit Abs Head Txt Math Fig Tab FigCap TabCap Foot Ref Average
Standard Training (Random) 0.88 0.77 0.78 0.66 0.87 044 0.78 0.83 0.84 0.81 0.28 085 0.72
Curriculum Learning (Re-Ranking) 0.91 0.75 0.85 0.73 0.92 0.55 0.82 0.85 0.84 0.78 0.57 092 0.78

The benefit is most striking for challenging, low-frequency
categories; for instance, the mAP50 for footnote more than
doubles from 0.28 to 0.57.

We hypothesize this substantial gain stems from a more
efficient, compositional learning process induced by the cur-
riculum. In a standard random regimen, the model may si-
multaneously learn to identify all element types while pars-
ing their complex spatial relationships on a difficult page,
which may cause losses from minority categories to be over-
whelmed by dominant ones. Our curriculum decouples these
tasks. The model first learns to robustly identify founda-
tional elements in simple layouts where the learning signal is
clear. Then, when presented with more complex pages, it can
leverage this existing knowledge and focus its capacity on
parsing more intricate arrangements or recognizing new ele-
ment types, rather than re-learning everything from scratch.
These results validate that CL is a simple yet highly effective
method for improving document layout model training.

7 Further Analysis and Discussion

To provide a clearer picture of our framework’s performance
and potential, we conducted an in-depth analysis cover-
ing three key areas: a comparative evaluation of our VLM
against specialized computer vision detectors, a detailed er-
ror analysis of the VLM, and an efficiency analysis of our
model and Latex2Layout pipeline. We summarize the main
findings below, with full technical details available in Ap-
pendix D.

1. VLM Performance and Versatility. Our VLM not only
achieves grounding accuracy competitive with the spe-
cialized YOLOVS detector but also offers significant ad-
vantages in versatility. It uniquely performs multi-task
learning (simultaneously grounding elements and pre-
dicting reading order), shows greater robustness to visual

noise and out-of-distribution (OOD) layouts, and demon-
strates capacity for zero-shot generalization to new cate-
gories (see Appendix D.1 for details).

2. Limitations and Future Directions. Our error analysis
identifies specific limitations that highlight clear paths
for future improvement. These include the omission of
very small objects (addressable via targeted data synthe-
sis), inaccuracies for OOD layouts (fixable by expand-
ing the training corpus using our Latex2Layout’s gen-
eralization capabilities), and sensitivity to severe visual
noise (which can be improved with data augmentation).
We also pinpoint a nuanced training challenge where the
model’s confidence doesn’t always align with its spatial
accuracy, pointing to the need for spatially-aware train-
ing objectives (see Appendix D.2 and D.3).

3. Pipeline Efficiency. From a practical standpoint, our
data extraction pipeline is highly efficient, processing
each page in just 0.435 seconds on a standard consumer
CPU. This confirms its suitability for creating large-scale
datasets affordably and at scale (see Appendix D.4).

8 Conclusion

This work introduces LaTeX2Layout, a novel and generaliz-
able pipeline for extracting high-fidelity layout annotations
directly from the LaTeX compilation process, eliminating
the need for post-rendering PDF parsing. Our method offers
significant improvements in annotation accuracy and scala-
bility over traditional approaches. By enabling the genera-
tion of diverse synthetic datasets through LaTeX’s flexible
source code modifications, we pave the way for training ro-
bust models capable of understanding complex document
layouts. Future work will explore further optimization of
layout perturbation strategies and the extension of our sys-
tem to a broader range of document types and formats.
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A Implementation Details of Latex2Layout Trackers
A.1 Non-Text Element Tracker (NET)

The NET is responsible for extracting precise bounding box information for discrete, non-paragraph elements such as titles,
figures, tables, and equations.

The core principle of NET is to leverage the ISTEX internal box model. Inspired by the native \ fbox command, we define
a new command, \layoutmark, that programmatically wraps target content in a measurement box. During compilation,
this wrapper uses TeX primitives (\wd, \ht, \dp) to record the element’s width, height, and depth, and the ‘zref* package’s
\zsavepos command to record its baseline coordinates. This metadata is then written to the auxiliary (‘.aux‘) file for post-
processing, without producing any visual artifacts in the final PDF. The core implementation is shown below.

Non-Text Element Tracker

\makeatletter
o

% Define a new counter for tracking fbox instances.
\newcounter{fboxcnt}

% Backup the original \fbox command.
\let\origQfbox\fbox

% Redefine \fbox to track dimensions of its content.
\renewcommand{\fbox} [1]{%

% Increment the fbox counter for each instance.
\refstepcounter{fboxcnt}

% Measure the content inside \fbox and store it in a temporary box.
\setbox\@tempboxa=\hbox{#1}%
% If the box width exceeds the available width, wrap the content into a vbox.
\ifdim\wd\@tempboxa<\dimexpr\linewidth+0.5\marginparsep+0.5\marginparwidth\relax
\else

\setbox\@tempboxa=\hbox{\vbox{#1}}%
\fi

% Write the width, height, and depth metadata to the auxiliary file.

\protected@write\Qauxout{}{\string\newlabel{width} {{\the\wd\Q@tempboxal}}}$%
\protected@write\Qauxout{}{\string\newlabel{height}{{\the\ht\Q@tempboxa}}}%
\protected@write\@auxout{}{\string\newlabel{depth}{{\the\dp\Gtempboxa}}}$%

% Temporarily disable fbox padding and border thickness.
\setlength{\fboxrule} {Opt}\setlength{\fboxsep}{0pt}%

% Output the box, tracking the baseline position.
\ifdim\wd\@tempboxa<\dimexpr\linewidth+0.5\marginparsep+0.5\marginparwidth\relax
% Save baseline position for smaller boxes.
\origQ@fbox{\zsavepos{base}#1}%
\else
% Save baseline position for wrapped content.
\orig@fbox{\zsavepos{base}\vbox{#1}}$%
\fi

}

% Auto-wrapping function for float content
\newcommand{\layoutmark} [1] {\fbox{#1}}$%
}

\makeatother

A.2 NET Instrumentation Strategies

To apply \ layoutmark systematically across a ISTEX document, we employ three complementary instrumentation strategies
that accommodate a wide range of IXIEX structures.



1. Direct Injection. For elements with consistent source patterns like titles or section headings, \layoutmark can be
inserted directly into the source code, a process that can be automated with simple regular expressions.

Heading Injection

\sectionx{
\layoutmark {
Introduction

H}

2. Package Hook Integration. For elements managed by sophisticated packages, we can leverage their built-in functionality
for cleaner and more robust instrumentation, often for either automation or improved accuracy.

A key strategy is full automation via package hooks. As shown below, the capt ion package allows us to define a custom
format that automatically applies our \ layoutmark to every figure and table caption throughout the document. This approach
requires no manual changes to the individual \capt ion commands in the document body.

Figure/Table Captions

\usepackage{caption}

\DeclareCaptionFormat {marked} {
\layoutmark {#1#2#3}

}

\captionsetup[figure] {format=marked}

\captionsetup[table] { format=marked}

In other cases, packages offer options that ensure more accurate bounding boxes for complex structures. Manually wrapping
a multi-line mathematical environment, for instance, can be unreliable. The empheq package solves this by providing a box
option that we can hook to our \layoutmark command, guaranteeing a single, precise bounding box around the entire
environment.

Math Equations

\usepackage {empheq}

\begin{empheq} [box=\layoutmark] {align}
[math content]
\end{empheq}

3. Command Redefinition. For common commands that lack package hooks, such as \includegraphics, we use
[ATEX’s native redefinition mechanism (\renewcommand). This allows us to intercept the command, wrap its content with
\layoutmark, and then call the original command.

Command Redefinition

\let\oldincludegraphics
\includegraphics
\renewcommand{\includegraphics} [2] []{
\layoutmark {
\oldincludegraphics[#1]{#2}
}}

A.3 Text Line Tracker (TLT)

Tracking plain text paragraphs presents a different challenge from the discrete elements handled by NET. Paragraphs lack the
explicit KTEX markup that NET’s instrumentation strategies rely on. To overcome this, the TLT leverages a novel approach



inspired by the 1ineno package.

The 1ineno package was designed to add visible line numbers to a document, and its internal mechanisms must there-
fore process the document on a line-by-line basis. We exploit this behavior by redefining one of its core internal hooks,
\MakeLineNo. As shown in the implementation below, our new definition first calls the original command to preserve its
core functionality, then uses \zsavepos to record the precise baseline coordinates of the current text line. It proceeds to write
a rich set of layout metadata to the . aux file for each line, including a paragraph identifier, column number, and line width.
This process is fully automatic and requires no changes to the document’s paragraph content.

Text Line Tracker

\usepackage[switch] {lineno}
% Add line numbers in PDF
\linenumbers

% Hidden line numbers in PDF
\renewcommand{\thelinenumber} {}

\makeatletter

% Backup the original \MakeLineNo definition.
\let\old@MakeLineNo\MakeLineNo

% Redefine \MakeLineNo to track line-level metadata.
\def\MakeLineNo{%

% Call the original line-numbering command.
\old@MakeLineNo

% Save the positional metadata of the current line.
\zsavepos{text—\the\c@linenumber}$%

% Record the current line width.
\edef\current@linewidth{\the\linewidth}$%

% Write the metadata to the auxiliary file, including:

% - Page number, environment type, line number, and various widths.
\protected@write\Qauxout{}{%
\string\newlabel{line-\the\c@linenumber} {{

)

page=\thepage, % Current page number.

)

type=\@currenvir, % Current LaTeX environment type.
line=\on@line, % Line number.

linewidth=\current@linewidth, % Line width.
textwidth=\the\textwidth, % Total text width.
columnwidth=\the\columnwidth}}% % Column width (if applicable).

}%

% Call the original \MakeLineNo again for better execution.
\old@MakeLineNo
}

\makeatother

\. .

A.4 Compiler Output Format

NET Compiler Output Format After compilation, each annotated element emits layout metadata to the . aux file in the
following structured format:

NET Output Format

\newlabel{width} {{box width}}
\newlabel{height}{{box height}}
\newlabel{depth}{{box depth}}
\zref@newlabel {base}{

\posx{box x}\posy{box y}
}




\zref@newlabel {element type}{
\default{}\page{page}
}

This metadata provides baseline coordinates and the full dimensions of the bounding box. These values are used in subsequent
stages to compute a precise layout.

TLT Compiler Output Format. The metadata for each line is emitted in the following format:

TLT Output Format

\zref@newlabel {text} {
\posx{x}\posy{y}

}

\newlabel{line} {{
page=page_id,
type=document,
para_id=tex_line,
linewidth=1linewidth

}}

\Q@LNQcol{column number}

B Dataset Details

This section provides detailed statistics for the datasets used in our experiments. We present the distribution of element cate-
gories and the complexity of page layouts for our real-world training set, our test set, and our synthetically augmented dataset.

B.1 Real-World Training Dataset

Our real-world training dataset, comprising 20K pages, forms the foundation for our experiments. As shown in Table B.1a, the
dataset exhibits a long-tail distribution typical of academic documents. Table B.1b details the layout complexity, measured by
the number of unique element types per page. Most pages contain between two and five distinct element types, with a total of
3,006 unique page-level layouts observed across the corpus.

B.2 Test Dataset

Our 1K-page test set was curated to ensure a fair and realistic evaluation. As detailed in Tables B.2a and B.2b, the distribution
of both individual element categories and layout complexity closely mirrors that of the real-world training set. This confirms
that our evaluation is conducted on a representative, in-distribution sample of authentic documents.

B.3 Synthetic Augmentation Dataset

To address the class imbalance and limited layout variety of the real-world data, we generated a large-scale synthetic dataset of
120K pages. The statistics demonstrate two key benefits:

» Improved Class Balance: Table B.3a shows that our augmentation process re-balances the class distribution. The proportion
of the dominant text class is reduced from 38.4% to 24.6%, while the representation of critical minority classes like
caption and footnote.

* Enhanced Layout Diversity: As shown in Table B.3b, our synthetic data significantly enhances layout variety. The number

of unique page-level element combinations more than doubles, from 3,006 in the real dataset to 6,126. This ensures the model
is exposed to a much broader range of structural variations, which is critical for improving robustness and generalization.



(a) Element category distribution.

(b) Page layout complexity.

Table B.1: Statistical details of the 20K real-world training dataset. Table (a) shows the distribution of element categories, while
Table (b) details the layout complexity, measured by the number of co-occurring element types per page.

Category Percentage
title 0.75%
abstract 0.73%
heading 19.65%
text 38.39%
figure 9.06%
figure caption 5.83%
table 5.40%
table caption 5.26%
math 9.28%
footnote 2.29%
reference 3.35%

Table B.2: Statistical details of the 1K-page test set.

(a) Element category distribution.

Category Percentage
title 0.66%
abstract 0.67%
heading 18.96%
text 39.39%
figure 7.96%
figure caption 4.99%
table 4.96%
table caption 4.30%
math 14.05%
footnote 1.39%
reference 2.67%

(a) Element category distribution.

Table B.3: Statistical details of the 120K-page synthetic dataset.

Category Percentage
title 1.55%
abstract 1.56%
heading 15.43%
text 24.59%
figure 11.25%
figure caption 8.84%
table 10.24%
table caption 10.09%
math 10.15%
footnote 4.22%
reference 3.08%

Element Types Unique Combinations Percentage

1 42 17.8%

2 227 23.4%

3 634 20.4%

4 795 22.9%

5 803 9.4%

6 372 5.1%

7 124 1.0%

8 9 0.01%

(b) Page layout complexity.
Element Types Unique Combinations Percentage

1 17 19.8%

2 70 22.7%

3 125 21.5%

4 114 20.7%

5 78 8.6%

6 44 6.0%

7 8 0.8%

(b) Page layout complexity.
Element Types Unique Combinations Percentage

1 60 12.3%
2 276 29.2%
3 1,049 16.9%
4 1,496 22.3%
5 1,802 11.5%
6 1,025 6.2%
7 368 1.5%
8 49 0.1%
9 1 0.01%

C.1 Training Procedure

We adopt Qwen-2.5-VL-3B as the backbone of our vision-language system, given its strong performance and growing adoption
in recent multimodal research (Bai et al. 2025).

C Training and Evaluation Details



Image Preprocessing Qwen-2.5-VL-3B requires input images to have dimensions that are multiples of 28, and bounding
box coordinates must be provided in absolute format (Bai et al. 2025; Qwen Team 2025b). To satisfy these constraints, we
first render PDF pages into images at 110 DPI, striking a balance between visual clarity and processing cost. Each image
is then resized to the nearest resolution divisible by 28 in both height and width. Bounding boxes are scaled accordingly to
preserve alignment with the updated image dimensions, ensuring accurate spatial correspondence between visual content and
annotations.

Prompt Design We follow the fine-tuning conventions established by the Qwen-LLaMA-Factory framework (hiyouga 2023;
Qwen Team 2025a) to construct task-specific prompts. The model is guided to perform region-level layout parsing to detect and
localize semantically meaningful document elements, and generate structured, machine-readable outputs, enabling downstream
applications such as document understanding and semantic layout parsing.

Supervised Fine-Tuning Prompt

Locate and detect the following regions in the image: title, abstract, heading,
footnote, figure, figure caption, table, table caption, math, text. Output each
detected region’s bbox coordinates in JSON format. The format of the output is:

<answer>‘*‘‘'

Json [ {
"bbox_2d": [x1, vy1l, x2, vy2],
"label": "region name",
"order": "reading order"}

]

‘Y '</answer>.

Supervised Fine-Tuning Procedure We fine-tune only the language model component while keeping the vision encoder
frozen, as the visual backbone already provides strong perceptual features; thus, the goal of fine-tuning is to align these features
with the expected structured outputs.

We adopt Low-Rank Adaptation (LoRA) (hiyouga 2023; Qwen Team 2025a) with rank 64, scaling factor 128, and dropout
rate 0.1. The training dataset includes 20K real-world document images and 120K synthetic samples, sorted by layout com-
plexity in ascending order. Training is conducted over 50 hours using four NVIDIA 4090D GPUs.

C.2 Evaluation Pipeline

Confidence and Non-maximum Suppression The VLM is provided with a PDF page and a structured prompt to predict
a set of bounding boxes, semantic classes, and the logical reading order of elements on the page. Unlike traditional object
detectors such as Faster R-CNN or YOLO, the VLM does not directly output confidence scores alongside its detections. Instead,
the confidence of each prediction is inherently represented by the probability of generating the corresponding tokens. In this
context, the logits produced by the VLM reflect a probability distribution over the vocabulary at each output step. Therefore, we
propose to extract the probability of the predicted class token as its confidence score. This approach naturally ties the confidence
to the generative process itself and provides a unified way to quantify confidence across different elements.

To finalize detections, we apply class-wise non-maximum suppression (NMS) based on these confidence scores. For each
semantic class, we first rank all candidate detections by their confidence and then iteratively suppress overlapping boxes with
an Intersection-over-Union (IoU) above a predefined threshold, retaining only the most reliable detections. This procedure
effectively merges overlapping predictions while preserving high-confidence detections.

Metrics for Ordering and Grounding Following previous works (Zhao et al. 2024b; Chen et al. 2024), we evaluate both the
accuracy of layout detection and the correctness of the predicted reading order using two complementary metrics:

Average Precision (AP): AP evaluates the model’s ability to accurately detect and classify layout elements by measuring
the overlap between predicted and ground-truth bounding boxes. We compute AP following the standard object detection
protocol: for each layout class, predictions are matched to ground-truth boxes based on an Intersection over Union (IoU)
threshold of 0.5. A prediction is considered correct if its IoU with a ground-truth box exceeds the threshold and the predicted
class matches the ground-truth label. We then compute precision and recall across all predictions and calculate the area under
the precision-recall curve. Higher AP indicates more accurate and consistent detection of layout components across the dataset.

Kendall’s Tau (7): Kendall’s Tau (Lapata 2006) assesses the correspondence between the predicted reading order and the
groundtruth order. For each page, we compare all pairs of elements to determine whether their relative order is preserved. The



score is defined as:
Nconcordant - Ndiscordant

’7— =
Nconcordant + Ndiscordant .
Here, Nconcordant cOunts the number of element pairs whose predicted order agrees with ground truth; Ngiscordant cOunts the

mismatches. A score of +1 indicates perfect agreement, 0 denotes random order, and —1 reflects complete inversion. This
metric directly assesses the model’s ability to capture logical reading flow.

D Additional Analysis Details

D.1 Comparison with Specialized Detectors
To contextualize our VLM’s performance, we also trained a specialized object detector, YOLOvVS, on the same datasets. Our
experiments show that on the specific task of element grounding, YOLOVS consistently achieves higher mAP50 scores than our
fine-tuned VLM. This advantage is expected and largely attributable to YOLOvS8’s architecture, which incorporates powerful
inductive biases optimized for object detection, such as direct bounding box regression and dense spatial feature extraction.

However, this narrow focus on detection comes at the cost of versatility. Our VLM, while slightly less performant on pure
grounding, demonstrates a suite of capabilities that highlight its potential for more comprehensive document intelligence tasks.
Full training details and results for the YOLO are available in Appendix E.

* Multi-Task Capability: The VLM is inherently multi-modal and multi-task. Unlike YOLOVS, it simultaneously performs
both element grounding and reading order prediction in a single forward pass.

 Visual Robustness: Our VLM exhibits greater resilience to visual perturbations. As shown in Appendix D.2 and F, its
performance remains stable on inputs with noise like shadows or blur, conditions under which specialized detectors can fail.

* Zero-Shot Generalization: A significant advantage of our fine-tuned VLM over specialized detectors is its capacity for
zero-shot generalization to unseen categories. This capability is most apparent before the model has over-specialized (i.e.,
overfit) to the training distribution. Figure D.1 provides a compelling example, where the model accurately localizes an
Algorithm block—a category it never encountered during training—generating a correct bounding box, albeit with low
confidence.
We attribute this powerful capability to the fundamental division of labor within the VLM architecture. The pre-trained vision
encoder acts as a universal feature extractor, identifying all salient visual patterns on the page, including those of unseen
elements. The role of SFT is then to teach the language model how to align textual labels from a prompt (e.g., “figure”,
“title””) with these pre-existing visual features. Essentially, the model learns the general task of ”grounding a concept to a
region” rather than simply memorizing a fixed set of classes. This allows it to leverage its semantic understanding to reason
about and localize novel elements, a flexibility far beyond the reach of rigid, category-fixed detectors.

Model Predictions with Confidence Ground Truth

Figure D.1: Example of zero-shot generalization from our fine-tuned VLM.

Ultimately, the choice of model represents a trade-off: YOLOVS offers superior speed and accuracy for single-task object
grounding, while our VLM provides a more holistic, robust, and adaptable solution for multifaceted document understanding.



D.2 Error Analysis

Despite its strong overall performance, our fine-tuned VLM has several limitations that highlight promising avenues for future
research. We discuss these below. Figure D.2 displays three representative failure cases for our VLM, while Figure D.3 shows
the corresponding outputs from YOLOVS for direct comparison.
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of the page. (b) When presented with an out-of-distribution poster layout, the model’s performance degrades. (c) Severe blurring
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Figure D.3: Corresponding outputs from the YOLOvVS model on the same samples. This visual comparison highlights the
trade-offs between the two models: YOLOVS is more precise on clean, in-distribution data (a), but the VLM is more robust, as
YOLOVS fails completely on the heavily blurred image (c) and perceives fewer semantic categories on the OOD poster (b).



Omission of Small Objects. Our model occasionally fails to detect very small objects, particularly single lines of text con-
taining only a few characters. This is a classic long-tail problem, likely stemming from the low frequency of such instances in
our training data, which provides an insufficient learning signal. To mitigate this, future work could pursue two complemen-
tary paths: (1) refining the training objective by up-weighting the loss for small objects, and (2) leveraging our LaTeX2Layout
pipeline to programmatically generate a synthetic dataset specifically enriched with these challenging small-text elements.

Generalization to Out-of-Distribution (OOD) Layouts. A known characteristic of SFT is its tendency to specialize a model
to the training distribution. Our analysis confirms this effect: while SFT makes our VLM highly proficient on academic articles,
it concurrently limits its generalization to out-of-distribution layouts, such as those in newspapers or posters. However, our
main results also reveal a clear solution. We have shown that VLM performance under SFT scales directly with data volume
and diversity. This indicates that the most effective path to a more universal model is to drastically expand the training corpus
itself. Our LaTeX2Layout pipeline is perfectly suited for this, since it can annotate any document type for which a IATgX source
exists. OOD annotation examples are showed in Appendix H. The primary bottleneck is the scarcity of public IfIEX sources
for non-academic documents. Therefore, a key avenue for future work is to use large language models (LLMs) to synthesize a
massive, diverse corpus of IZEX sources across various domains. Alternatively, reinforcement learning (RL) could be explored
to train a more generalizable layout parsing policy that is less reliant on the specific styles encountered during fine-tuning.

Robustness to Severe Visual Perturbations. Like most vision models, our VLM’s performance degrades under excessive
visual noise, such as aggressive image compression or heavy blurring. To validate a path for improvement, we conducted
experiments augmenting our training data with such visual distortions. Details are in Appendix F. The results confirm that
fine-tuning with these augmentations measurably enhances the VLM’s robustness, demonstrating a clear strategy for improving
model resilience in real-world applications where document quality can vary.

D.3 On Confidence and Grounding Accuracy

A key challenge when adapting VLMs for grounding tasks is the potential misalignment between the model’s generation
confidence and its spatial accuracy. Our analysis in Table D.1 reveals that the model fine-tuned on 20K examples produces
outputs with very high token-level confidence (0.92 mean), yet its grounding accuracy is moderate (0.78 mAPS50).

Table D.1: Confidence scores of Qwen-SFT20K and Qwen-SFT140K across categories.

Model Tit Abs Head Txt Math Fig Tab FigCap TabCap Foot Ref Average

Qwen-SFT20K  0.9783 0.9890 0.9961 0.9976 0.9648 0.9688 0.9832 1.0000 0.9063 0.8770 0.9876 0.9226
Qwen-SFT140K 0.9883 0.9997 0.9999 0.9999 0.9976 0.9989 0.9932 1.0000 0.9883 0.9670 0.9876 0.9836

We attribute this discrepancy to the standard VLM training objective. The cross-entropy loss for next-token prediction in-
centivizes syntactic fluency—generating a well-formed bounding box in the correct format—but does not explicitly enforce
the geometric correctness of the coordinates themselves. While scaling the dataset to 140K samples improves both confidence
(0.98) and accuracy (0.91 mAP50), indicating better internal alignment, the fundamental mismatch persists. This insight high-
lights a critical avenue for future research: developing spatially-aware training objectives or post-hoc calibration methods to
better align a VLM’s prediction confidence with its true localization accuracy.

D.4 Efficiency Analysis

Table D.2: Efficiency analysis of the Latex2Layout pipeline and model inference.

Component Task / Description Time Hardware
1. Injecting NET/TLT markers into ISTEX source 0.135 s/page
. 2. Compiling ¥TEX source via pdflatex 0.244 s/page
Dataset Generation 3. Parsing metadata and computing bounding boxes 0.056 s/page AMD Ryzen 7 5800H
Total Generation Time 0.435 s/page
Qwen-2.5-VL-3B-Instruct 0.925 s/element

Maodel Inference NVIDIA RTX 4090D

We evaluate the computational efficiency of our pipeline to assess its practicality for large-scale applications. As shown in
Table D.2, the entire process requires only 0.435 seconds per page on a commodity CPU (AMD Ryzen 7 5800H), confirming
its scalability for creating large-scale datasets at low cost. The inference speed of our fine-tuned VLM is 0.925 seconds per
element on an NVIDIA RTX 4090D GPU. As established in our comparison with specialized detectors (Appendix D.1), we
consider this a practical trade-off, balancing the model’s versatility and robustness against its higher computational cost.



D.5 Training Loss Comparison
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Figure D.4: Training loss comparison. The curriculum learning strategy (orange curve) converges faster and to a lower loss
value than the standard random shuffling baseline (blue curve).

E YOLOVS Training and Performance

To provide a strong baseline for the element grounding task, we trained a specialized object detector, YOLOVS, on our datasets.
We adhered to a standard training protocol to ensure a fair comparison. The model was trained for 150 epochs with a batch size
of 16. We used the AdamW optimizer with an initial learning rate of 1 x 10~3 and a cosine annealing schedule. Input images
were resized to a resolution of 1024x1024 pixels.

The results are presented in Table E.1. As expected, the YOLOv8 model, with its architecture highly optimized for detection,
achieves excellent grounding performance. The model trained on the full 140K dataset demonstrates superior accuracy across
nearly all categories compared to the one trained on only 20K real samples, underscoring the benefit of our large-scale dataset
even for specialized detectors.

Table E.1: Performance of YOLOvVS-L on the element grounding task. As a vision-only detector, it cannot perform reading
order prediction. Best scores are shown in bold.

Element Grounding (AP50)

Model Reading Order (1)

Tit Abs Head Txt Math Fig Tab FigCap TabCap Foot Ref Average
YOLOVS (20K Real) - 095 095 092 096 0.87 0.94 097 091 091 0.85 097 093
YOLOVS (140K Combined) - 097 0.96 0.94 0.97 091 0.96 0.98 0.94 094 088 098 0.95

F Optimization for Visual Perturbation

To evaluate and enhance our VLM’s resilience to real-world document degradation, we conducted a targeted data augmentation
experiment. This section details our augmentation strategy and presents a visual comparison and analysis.

F.1 Data Augmentation and Fine-Tuning

We created an augmented version of our 20K real-world dataset by applying a range of visual perturbations that simulate
common document quality issues. For each image in the real-world set, one of the following five augmentations was randomly
selected and applied:

* Scanning Noise: Simulates the effect of a document scanner by adding subtle Gaussian noise and a slight blur.
* Blurring: Applies a more significant Gaussian blur to mimic an out-of-focus effect.

Ink Effects: Introduces salt-and-pepper noise and varies brightness to simulate inconsistent ink application.
* Shadows: Applies a gradient mask to create the appearance of uneven lighting.

Stains: Adds semi-transparent elliptical blotches to simulate stains or water damage.



Visual examples of these transformations are provided in Figure F.1. We then used this newly created “noisy” dataset for a
second stage of SFT, starting from the checkpoint of the model already trained on the clean 140K dataset. This process yielded
our enhanced, noise-robust model, hereafter referred to as VLM-Aug.

(a) Scanning Noise (b) Blurring (c) Ink Effects (d) Shadows (e) Stains

Figure F.1: Examples of the five visual perturbation types randomly applied to our 20K real-world dataset to create the aug-
mented training set.

F.2 Visual Comparison and Analysis

Figure F.2 presents a side-by-side comparison of model outputs on a heavily blurred test page. This visual evidence confirms two
key findings. First, our base VLM possesses greater intrinsic robustness to visual noise than the specialized detector. The trained
YOLOv8 model (Figure F.2a) fails catastrophically on this perturbed input, misclassifying the entire page as a single figure
element. In contrast, our original VLM (Figure F.2b) demonstrates significant inherent robustness. It correctly identifies the
main structural elements of the page, struggling only with the precise localization of the small footnote.

Second, this inherent robustness can be significantly enhanced. After the second stage of fine-tuning on the augmented data,
our VLM-Aug model (Figure F.2c) correctly parses the entire layout, accurately localizing the footnote. This experiment vali-
dates that targeted data augmentation is a highly effective strategy for creating VLMs that are resilient to the visual degradation
common in real-world documents.
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Figure F.2: A visual comparison of model performance on a heavily blurred document. (a) YOLOVS fails completely. (b) Our
original VLM correctly identifies the main layout but misplaces the footnote. (¢) The VLM fine-tuned on augmented data
correctly parses the entire page.



G More Examples of Synthetic Data Annotations

Figure G.1: Examples of our synthetic dataset.
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