

ML ZeroTuning: Unlocking the Initial Token's Power to Enhance Large

Language Models Without Training

Feijiang Han¹, Xiaodong Yu¹², Jianheng Tang³, Delip Rao¹, Weihua Du⁴, Lyle Ungar¹ ¹University of Pennsylvania, ²AMD, ³Peking University, ⁴Carnegie Mellon University

TL;DR

- The Problem: Existing training-free attention tuning methods are complex and biased, relying on heuristics to find "important" task-specific tokens.
- Our Insight: Don't search for complex solutions. The most powerful control lever is universal and already there: the initial token (e.g., <BOS>).
- Our Solution (ZeroTuning): A simple, few-line code modification to precisely tune the initial token's attention, requiring zero parameter updates, and working in supervised and unsupervised modes.
- The Impact: ZeroTuning achieves significant gains across 15 datasets, outperforming previous, more complex methods.

METHOD

The methodology consists of two key steps:

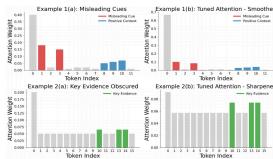
- Head Behavior Profiling: Categorizing heads into up-effective (performance improves with more initial token's attention) and down-effective
- Selective Rescaling: Conducting supervised or unsupervised searches to get scaling factors for attention scores or key states

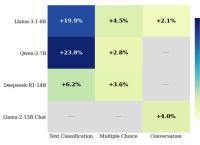
```
Class LlamaAttention(nn.Module):
def forward(self, target_layers, target_heads,
                                               scaling_factor
     # ... omitting unmodified LLamaAttention code
     # 1. Standard attention weight calculation
     attn_weights = F.softmax(torch.matmul(query_states,
                    key_states.transpose(2, 3)), dim=-1)
     # 2. Our [ZeroTuning] Method
     if self.layer_idx in target_layers:
          # Shape: (bsz, num_heads, q_len, kv_len)
         attn_weights[:, target_heads, :, 0] *= scaling_factor
         # Re-normalize the Attention
         attn_weights[:, target_heads] =
         F.normalize(attn_weights[:, target_heads], p=1, dim=-1)
     # 3. Compute attention output
     attn_output = torch.matmul(attn_weights, value_states)
     # omitting unmodified LLamaAttention code ...
```

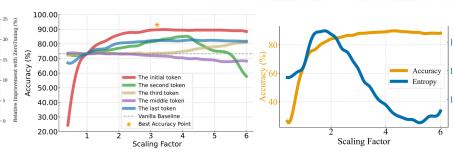
INSIGHTS

The Initial Token Tuning Effect

- It sharpens or smooths attention focus, an effect amplified by the token's natural "attention sink" role.
- This boosts accuracy by correcting pretrained biases and reduces uncertainty (output entropy) for more confident predictions.
- · Crucially, minimum entropy aligns with maximum accuracy, enabling a powerful unsupervised tuning method.







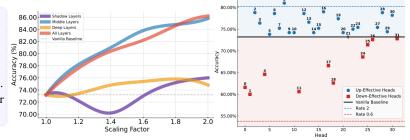
DEEPER ANALYSIS

Tuning Which Layers:

- Greatest impact from shallow & middle layers.
- Optimal performance by jointly tuning all layers...

Tuning Which Heads:

- Attention heads show distinct tuning preferences.
- Selectively tuning the dominant head type (up or down effective) outperforms uniform tuning.



Dataset	Method	E	Average			
		0	100	200	300	
SST-2	Vanilla	73.20	68.40	59.20	32.00	58.20
	ZeroTuning	91.60	89.20	87.40	85.40	88.40
	Diff	18.40	20.80	28.20	53.40	30.20
BoolQ	Vanilla	69.60	68.60	67.60	68.60	68.60
	ZeroTuning	82.40	81.80	81.40	81.20	81.70
	Diff	12.80	13.20	13.80	12.60	13.10
LogiQA	Vanilla	39.40	36.60	36.20	35.80	37.00
	ZeroTuning	42.40	43.00	41.00	41.00	41.85
	Diff	3.00	6.40	4.80	5.20	4.85
PIQA	Vanilla	83.60	82.20	81.20	80.60	81.90
	ZeroTuning	85.40	83.80	83.20	82.80	83.80
	Diff	1.80	1.60	2.00	2.20	1.90

Shot	Method	SST-5	BoolQ	MMLU	AQUA	Average
0-Shot	Vanilla	45.4	69.6	67.4	25.7	52.0
	ZeroTuning	52.0	82.4	68.80	30.4	58.40
	Diff	6.6	12.8	1.4	4.7	6.4
1-Shot	Vanilla	47.6	80.4	61.8	28.1	54.5
	ZeroTuning	49.4	82.4	63.4	30.0	56.3
	Diff	1.8	2.0	1.6	1.9	1.8
2-Shot	Vanilla	50.4	83.4	64.4	25.7	56.0
	ZeroTuning	52.4	85.0	66.0	32.8	59.1
	Diff	2.0	1.6	1.6	7.1	3.1

Works With:

- · Longer Contexts
- In-context Learning (Few-shot)
- Resource Constraints
- Diverse Decoding Strategies
- Prompt Variations
- Quantized Models (4/8-bit)